Structural dynamics of the actin-myosin interface by site-directed spectroscopy.

نویسندگان

  • Vicci L Korman
  • Sarah E B Anderson
  • Ewa Prochniewicz
  • Margaret A Titus
  • David D Thomas
چکیده

We have used site-directed spin and fluorescence labeling to test molecular models of the actin-myosin interface. Force is generated when the actin-myosin complex undergoes a transition from a disordered weak-binding state to an ordered strong-binding state. Actomyosin interface models, in which residues are classified as contributing to either weak or strong binding, have been derived by fitting individual crystallographic structures of actin and myosin into actomyosin cryo-EM maps. Our goal is to test these models using site-directed spectroscopic probes on actin and myosin. Starting with Cys-lite constructs of both yeast actin (ActC) and the Dictyostelium myosin II motor domain (S1dC), site-directed labeling (SDL) mutants were generated by mutating residues to Cys in the proposed weak and strong-binding interfaces. This report focuses on the effects of forming the strong-binding complex on four SDL mutants, two located in the proposed weak-binding interface (ActC5 and S1dC619) and two located in the proposed strong-binding interface (ActC345 and S1dC401). Neither the mutations nor labeling prevented strong actomyosin binding or actin-activation of myosin ATPase. Formation of the strong-binding complex resulted in decreased spin and fluorescence probe mobility at all sites, but both myosin-bound probes showed remarkably high mobility even after complex formation. Complex formation decreased solvent accessibility for both actin-bound probes, but increased it for the myosin-bound probes. These results are not consistent with a simple model in which there are discrete weak and strong interfaces, with only the strong interface forming under strong-binding conditions, nor are they consistent with a model in which surface residues become rigid and inaccessible upon complex formation. We conclude that all four of these residues are involved in the strong actin-myosin interface, but this interface is remarkably dynamic, especially on the surface of myosin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and functional impact of site-directed methionine oxidation in myosin.

We have examined the structural and functional effects of site-directed methionine oxidation in Dictyostelium (Dicty) myosin II using mutagenesis, in vitro oxidation, and site-directed spin-labeling for electron paramagnetic resonance (EPR). Protein oxidation by reactive oxygen and nitrogen species is critical for normal cellular function, but oxidative stress has been implicated in disease pro...

متن کامل

Site-directed spectroscopic probes of actomyosin structural dynamics.

Spectroscopy of myosin and actin has entered a golden age. High-resolution crystal structures of isolated actin and myosin have been used to construct detailed models for the dynamic actomyosin interactions that move muscle. Improved protein mutagenesis and expression technologies have facilitated site-directed labeling with fluorescent and spin probes. Spectroscopic instrumentation has achieve...

متن کامل

Structural dynamics of actin during active interaction with myosin: different effects of weakly and strongly bound myosin heads.

We have used optical spectroscopy (transient phosphorescence anisotropy, TPA, and fluorescence resonance energy transfer, FRET) to detect the effects of weakly bound myosin S1 on actin during the actomyosin ATPase cycle. The changes in actin were reported by (a) a phosphorescent probe (ErIA) attached to Cys 374 and (b) a FRET donor-acceptor pair, IAEDANS attached to Cys 374 and a nucleotide ana...

متن کامل

Conformationally trapping the actin-binding cleft of myosin with a bifunctional spin label.

We have trapped the catalytic domain of Dictyostelium (Dicty) myosin II in a weak actin-binding conformation by chemically crosslinking two engineered cysteines across the actin-binding cleft, using a bifunctional spin label (BSL). By connecting the lower and upper 50 kDa domains of myosin, the crosslink restricts the conformation of the actin-binding cleft. Crosslinking has no effect on the ba...

متن کامل

Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity

Despite extensive scrutiny of the myosin superfamily, the lack of high-resolution structures of actin-bound states has prevented a complete description of its mechanochemical cycle and limited insight into how sequence and structural diversification of the motor domain gives rise to specialized functional properties. Here we present cryo-EM structures of the unique minus-end directed myosin VI ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 356 5  شماره 

صفحات  -

تاریخ انتشار 2006